Characteristics:
Physical properties
A metallic element, titanium is recognized for its high strength-to-weight ratio. It is a strong metal with low density that is quite ductile (especially in an oxygen-free environment), lustrous, and metallic-white in color. The relatively high melting point (more than 1,650 °C or 3,000 °F) makes it useful as a refractory metal. It is paramagnetic and has fairly low electrical and thermal conductivity.
Commercial (99.2% pure) grades of titanium have ultimate tensile strength of about 63,000 psi (434 MPa), equal to that of common, low-grade steel alloys, but are 45% lighter. Titanium is 60% more dense than aluminium, but more than twice as strong as the most commonly used 6061-T6 aluminium alloy. Certain titanium alloys (e.g., Beta C) achieve tensile strengths of over 200,000 psi (1,400 MPa). However, titanium loses strength when heated above 430 °C (806 °F).
Titanium is fairly hard (although not as hard as some grades of heat-treated steel), non-magnetic and a poor conductor of heat and electricity. Machining requires precautions, as the material will soften and gall if sharp tools and proper cooling methods are not used. Like those made from steel, titanium structures have a fatigue limit which guarantees longevity in some applications. Titanium alloys have lower specific stiffnesses than in many other structural materials such as aluminium alloys and carbon fiber.
The metal is a dimorphic allotrope whose hexagonal alpha form changes into a body-centered cubic (lattice) β form at 882 °C (1,620 °F). The specific heat of the alpha form increases dramatically as it is heated to this transition temperature but then falls and remains fairly constant for the β form regardless of temperature. Similar to zirconium and hafnium, an additional omega phase exists, which is thermodynamically stable at high pressures, but is metastable at ambient pressures. This phase is usually hexagonal (ideal) or trigonal (distorted) and can be viewed as being due to a soft longitudinal acoustic phonon of the β phase causing collapse of (111) planes of atoms.
.....