In biology, evolution is the change in the inherited characteristics, or traits of a population of organisms. Heritable traits are encoded in the genetic material of an organism (usually DNA); changes in this genetic material (mutation) and the subsequent spread of these changes in the population drives evolution.
Natural selection, one of the processes that determines whether changes spread within the population, is a result of the advantage conferred on organisms with beneficial traits. If these traits increase the evolutionary fitness of an organism, they will be more likely to survive and reproduce than other organisms in the population. In doing so, they pass more copies of those heritable traits on to the next generation, causing advantageous traits becoming more common in each generation; the corresponding decrease in fitness for deleterious traits results in their become rarer.[1][2][3]
This simple process has a powerful effect, namely, adaptation: the gradual accumulation of new beneficial traits and the preservation of existing ones results in a population of organisms becoming better suited to its environment and ecological niche.[4]
Though natural selection is decidedly non-random in its manner of action, other more capricious forces have a strong hand in the process of evolution. Genetic drift results in heritable traits becoming more or less common simply due to random chance, as a result of sampling error.[citation needed] This aimless process has a profound influence, and in some instances may overwhelm the effects of natural selection - even a horse with favored odds can lose.
Differences in environment and the element of chance in what mutations happen to arise and which ones survive can cause different populations (or parts of populations) to develop in divergent directions. Enough divergence between two populations can eventually cause speciation, the emergence of two distinct types of organisms from a common origin. All known species are descended from a single ancestor through this process of divergence
Evolution consists of two basic types of processes: those that introduce new genetic variation into a population, and those that affect the frequencies of existing genes.[7] Random copying errors in genetic material (mutations), migration between populations (gene flow), and the reshuffling of genes during sexual reproduction (genetic recombination) create variation in organisms. In some organisms, like bacteria and plants, variation is also produced through horizontal gene transfer (the transfer of genetic material between organisms that are not directly related) and the mixing of genetic material by hybridization (interbreeding between species).
Genetic drift,natural selection, and gene flow act on this variation by increasing or decreasing the frequency of traits: gene flow and genetic drift does so randomly, while natural selection does so based on whether a trait is beneficial, or conducive to reproduction.
Variation
Main article: Genetic variation
The variation in a population's apparent traits, or phenotypes, is primarily the result of the specific genetic makeup, or genotypes, encoded on DNA molecules called chromosomes. A specific location on a chromosome is known as a locus; a variant of a DNA sequence at a given locus is an allele. The modern evolutionary synthesis defines evolution as the change over time in the relative frequencies of alleles in a population. The variation between different DNA codings (alleles) at various loci is thus considered responsible for evolutionary change.
Genetic variation is often the result of a new mutation in a single individual (usually point mutations and/or duplications); in subsequent generations, the frequency of that variant may fluctuate in the population, becoming more or less prevalent relative to other alleles at the site. All evolutionary forces act by driving this change in allele frequency in one direction or another. Variation disappears when an allele reaches the point of fixation—when it either reaches a frequency of zero and disappears from the population, or reaches a frequency of one and replaces the ancestral allele entirely. Most sites in the complete DNA sequence, or genome, of a species are identical in all individuals in the population. Consequently, relatively small genotypic changes can lead to dramatic phenotypic ones. Sites with more than one allele are called polymorphic, or segregating, sites. Polymorphism leads to distinct groups of traits arising within the same species, such as different hair colors or sexes. Interactions between a genotype and the environment may also affect the phenotype, as reflected in developmental and phenotypic plasticity.
Heredity
Main article: Heredity
A section of a model of a DNA molecule.[8] Also: animated version.Gregor Mendel's work provided the first firm basis to the idea that heredity occurred in discrete units. He noticed several traits in peas that occur in only one of two forms (e.g., the peas were either "round" or "wrinkled"), and was able to show that the traits were: heritable (passed from parent to offspring); discrete (i.e., if one parent had round peas and the other wrinkled, the progeny were not intermediate, but either round or wrinkled); and distributed to progeny in a well-defined and predictable manner (Mendelian inheritance). His research laid the foundation for the concept of discrete heritable traits, known today as genes. After Mendel's work was "rediscovered" in 1900, the concepts involved were found to have wide applicability, and it was found that most complex traits were polygenetic and not controlled by single-unit characters.
Later research gave a physical basis to the notion of genes, and eventually identified DNA as the genetic material, with genes functioning as discrete elements within DNA. DNA is not perfectly copied, and rare mistakes (mutations) in genes can affect traits that the genes control (e.g., pea shape).
A gene can have modifications such as DNA methylation, which do not change the nucleotide sequence of a gene, but do result in the epigenetic inheritance of a change in the expression of that gene in a trait. Another epigenetic mechanism is via microRNA and RNA interference, which serve regulatory roles in gene transcription and translation.
Non-DNA based forms of heritable variation exist, such as transmission of the secondary structures of prions or structural inheritance of patterns in the rows of cilia in protozoans such as Paramecium[9] and Tetrahymena.[10] Investigations continue into whether these mechanisms allow for the production of specific beneficial heritable variation in response to environmental signals. If this were shown to be the case, then some instances of evolution would lie outside of the typical Darwinian framework, which avoids any connection between environmental signals and the production of heritable variation. However, the processes that produce these variations are rather rare, often reversible, and leave the genetic information intact.
Mutation
Main article: Mutation
Mutation can occur because of "copy errors" during DNA replication.Genetic variation arises due to random mutations that occur at a certain rate in the genomes of all organisms. Mutations are permanent, transmissible changes to the genetic material (usually DNA or RNA) of a cell, and can be caused by: "copying errors" in the genetic material during cell division; by exposure to radiation, chemicals, or viruses. In multicellular organisms, mutations can be subdivided into germline mutations that occur in the gametes and thus can be passed on to progeny, and somatic mutations that can lead to the malfunction or death of a cell and can cause cancer.
Mutations that are not affected by natural selection are called neutral mutations. Their frequency in the population is governed by mutation rate, genetic drift and selective pressure on linked alleles. It is understood that most of a species' genome, in the absence of selection, undergoes a steady accumulation of neutral mutations.
Individual genes can be affected by point mutations, also known as SNPs, in which a single base pair is altered. The substitution of a single base pair may or may not affect the function of the gene, while deletions and insertions of base pairs usually results in a non-functional gene.[11]
Mobile elements, transposons, make up a major fraction of the genomes of plants and animals and appear to have played a significant role in the evolution of genomes. These mobile insertional elements can jump within a genome and alter existing genes and gene networks to produce evolutionary change and diversity.[12]
On the other hand, gene duplications, which may occur via a number of mechanisms, are believed to be one major source of raw material for evolving new genes as tens to hundreds of genes are duplicated in animal genomes every million years.[13] Most genes belong to larger "families" of genes derived from a common ancestral gene (two genes from a species that are in the same family are dubbed "paralogs"). Another mechanism causing gene duplication is intergenic recombination, particularly "exon shuffling", i.e., an aberrant recombination that joins the "upstream" part of one gene with the "downstream" part of another.[14] Genome duplications and chromosome duplications also appear to have served a significant role in evolution. Genome duplication has been the driving force in the Teleostei genome evolution, where up to four genome duplications are thought to have happened, resulting in species with more than 250 chromosomes.
Large chromosomal rearrangements do not necessarily change gene function, but do generally result in reproductive isolation, and, by definition, speciation; in sexual organisms, species are usually defined by the ability to interbreed). An example of this mechanism is the fusion of two chromosomes in the Homo genus that produced human chromosome 2; this fusion did not occur in the chimpanzee lineage, resulting in two separate chromosomes in extant chimpanzees.
A central question in evolutionary biology concerns the issue of whether speciation occurs gradually or in sporadic spurts (punctuated equilibrium). A study examining 122 genes across kingdoms and phyla found approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from gradual divergence.[15] Punctuational effects occur at more than twice the rate in fungi and plants than in animals, but the proportion of total divergence attributable to sporadic change does not vary among these groups.
Horizontal gene transfer
A phylogenetic tree of all extant organisms, based on 16S rRNA gene sequence data, showing the evolutionary history of the three domains of life, bacteria, archaea and eukaryotes. Originally proposed by Carl Woese.Horizontal gene transfer (HGT) is any process in which an organism transfers genetic material to another organism that is not its offspring. This mechanism allows for the transfer of genetic material between unrelated organisms and is a form of gene flow.
Many mechanisms for horizontal gene transfer have been observed, such as antigenic shift, reassortment, and hybridization. Viruses can transfer genes between species via transduction. Bacteria can incorporate genes from other dead bacteria or plasmids via transformation, exchange genes with living bacteria via conjugation, and have plasmids "set up residence separate from the host's genome".[16] Hybridization is highly significant in plant speciation,[17] and one out of ten species of birds are known to hybridize.[18] There are also examples of hybridization in mammals and insects;[19] however, this most often results in sterile offspring.
Horizontal gene transfer has been shown to result in the spread of antibiotic resistance across bacterial populations.[20] Furthermore, findings indicate that HGT has been a major mechanism for prokaryotic and eukaryotic evolution.[21][22]
Horizontal gene transfer complicates the inference of the phylogeny of life, as the original metaphor of a tree of life no longer fits. Rather, since genetic information is passed to other organisms and other species in addition to being passed from parent to offspring, "biologists [should] use the metaphor of a mosaic to describe the different histories combined in individual genomes and use [the] metaphor of a net to visualize the rich exchange and cooperative effects of HGT among microbes".[23]
Mechanisms of evolution
Selection and adaptation
Main articles: Natural selection and Adaptation
A peacock's tail is the canonical example of sexual selection.Natural selection comes from differences in survival and reproduction. Differential mortality is the survival rate of individuals to their reproductive age. Differential fertility is the total genetic contribution to the next generation. Note that, whereas mutations and genetic drift are random, natural selection is not, as it preferentially selects for different mutations based on differential fitnesses. For example, rolling dice is random, but always picking the higher number on two rolled dice is not random. The central role of natural selection in evolutionary theory has given rise to a strong connection between that field and the study of ecology.
Natural selection can be subdivided into two categories: ecological selection occurs when organisms that survive and reproduce increase the frequency of their genes in the gene pool over those that do not survive; and sexual selection occurs when organisms which are more attractive to the opposite sex because of their features reproduce more and thus increase the frequency of those features in the gene pool.
Natural selection operates on mutations in a number of different ways. Arguably the most common form of selection is stabilizing selection, which decreases the frequency of harmful mutations; "living fossils" may be a result of this. Other forms of natural selection include directional selection, which increases the frequency of a beneficial mutation, and artificial selection, the purposeful breeding of a species.
Through the process of natural selection, organisms become better adapted to their environments. Adaptation is any evolutionary process that increases the fitness of the individual, or sometimes the trait that confers increased fitness, e.g., a stronger prehensile tail or greater visual acuity. Note that adaptation is context-sensitive; a trait that increases fitness in one environment may decrease it in another.
Recombination
Main article: Genetic recombination
In asexual organisms, variants in genes on the same chromosome will always be inherited together—they are linked, by virtue of being on the same DNA molecule. However, sexual organisms, in the production of gametes, shuffle linked alleles on homologous chromosomes inherited from the parents via meiotic recombination. This shuffling allows independent assortment of alleles (mutations) in genes to be propagated in the population independently. This allows bad mutations to be purged and beneficial mutations to be retained more efficiently than in asexual populations.
However, the meitoic recombination rate is not very high - on the order of one crossover (recombination event between homologous chromosomes) per chromosome arm per generation. Therefore, linked alleles are not perfectly shuffled away from each other, but tend to be inherited together. This tendency may be measured by comparing the co-occurrence of two alleles, usually quantified as linkage disequilibrium (LD). A set of alleles that are often co-propagated is called a haplotype. Strong haplotype blocks can be a product of strong positive selection.
Recombination is mildly mutagenic, which is one of the proposed reasons why it occurs with limited frequency. Recombination also breaks up gene combinations that have been successful in previous generations, and hence should be opposed by selection. However, recombination could be favoured by negative frequency-dependent selection (this is when rare variants increase in frequency) because it leads to more individuals with new and rare gene combinations being produced.
When alleles cannot be separated by recombination (for example in mammalian Y chromosomes), there is an observable reduction in effective population size, known as the Hill-Robertson effect, and the successive establishment of bad mutations, known as Muller's ratchet.
Genetic drift
Main article: Genetic drift
Genetic drift is the change in allele frequency from one generation to the next as a result of the statistical effect of chance. The frequency of an allele in the offspring generation will vary according to a probability distribution of the frequency of the allele in the parent generation. Thus, over time even in the absence of selection upon the alleles, allele frequencies tend to "drift" upward or downward, eventually becoming "fixed" - that is, going to 0% or 100% frequency. Thus, fluctuations in allele frequency between successive generations may result in some alleles disappearing from the population due to chance alone. Two separate populations that begin with the same allele frequencies therefore might drift apart by random fluctuation into two divergent populations with different allele sets (for example, alleles present in one population could be absent in the other, or vice versa).
Gene flow and population structure
Main articles: Gene flow and Population genetics
Map of the world showing distribution of camelids. Solid black lines indicate possible migration routes.Gene flow, also called migration, is the exchange of genetic variation between populations, when geography and culture are not obstacles. Ernst Mayr thought that gene flow is likely to be homogenising, and therefore counteracting selective adaptation. Obstacles to gene flow result in reproductive isolation, a necessary condition for speciation.
The free movement of alleles through a population may also be impeded by population structure, the size and geographical distribution of a population. For example, most real-world populations are not actually fully interbreeding; geographic proximity has a strong influence on the movement of alleles within the population. Population structure has profound effects on possible mechanisms of evolution.
The effect of genetic drift depends strongly on the size of the population: drift is important in small mating populations, where chance fluctuations from generation to generation can be large. The relative importance of natural selection and genetic drift in determining the fate of new mutations also depends on the population size and the strength of selection. Natural selection is predominant in large populations, while genetic drift is in small populations. Finally, the time for an allele to become fixed in the population by genetic drift (that is, for all individuals in the population to carry that allele) depends on population size—smaller populations require a shorter time for fixation.
An example of the effect of population structure is the founder effect, in which a population temporarily has very few individuals as a result of a migration or population bottleneck, and therefore loses much genetic variation. In this case, a single, rare allele may suddenly increase very rapidly in frequency within a specific population if it happened to be prevalent in a small number of "founder" individuals. The frequency of the allele in the resulting population can be much higher than otherwise expected, especially for deleterious, disease-causing alleles. Since population size has a profound effect on the relative strengths of genetic drift and natural selection, changes in population size can alter the dynamics of these processes considerably.
Speciation and extinction
Main articles: Speciation and Extinction
An Allosaurus skeleton.Speciation is the process by which new biological species arise. This may take place by various mechanisms. Allopatric speciation occurs in populations that become isolated geographically, such as by habitat fragmentation or migration.[24] Sympatric speciation occurs when new species emerge in the same geographic area.[25][26] Ernst Mayr's peripatric speciation is a type of speciation that exists in between the extremes of allopatry and sympatry. Peripatric speciation is a critical underpinning of the theory of punctuated equilibrium. An example of rapid sympatric speciation can be clearly observed in the triangle of U, where new species of Brassica sp. have been made by the fusing of separate genomes from related plants.
One common misconception about evolution is the idea that if humans evolved from monkeys, monkeys should no longer exist. This misunderstands speciation, which frequently involves a subset of a population cladogenetically splitting off before speciating, rather than an entire species simply turning into a new one. Cladogenesis is particularly common when two subsets of a population are isolated from each other. Additionally, biologists have never claimed that humans evolved from monkeys—only that humans and monkeys share a common ancestor, as do all organisms.[27]
Extinction is the disappearance of species (i.e., gene pools). The moment of extinction is generally defined as occurring at the death of the last individual of that species. Extinction is not an unusual event on a geological time scale—species regularly appear through speciation, and disappear through extinction. The Permian-Triassic extinction event was the Earth's most severe extinction event, rendering extinct 90% of all marine species and 70% of all terrestrial vertebrate species. In the Cretaceous-Tertiary extinction event, many forms of life perished (including approximately 50% of all genera), the most commonly mentioned among them being the non-avian dinosaurs. The Holocene extinction event is a current mass extinction, involving the rapid extinction of tens or hundreds of thousands of species each year. Scientists consider human activities to be the primary cause of the ongoing extinction event, as well as the related influence of climate change.[28]
Evidence of evolution
Main article: Evidence of evolution
Tiktaalik in context: one of many species that track the evolutionary development of fish fins into tetrapod limbs.Evolution has left numerous signs of the histories of different species. Fossils, along with the comparative anatomy of present-day organisms, constitute the morphological, or anatomical, record. By comparing the anatomies of both modern and extinct species, paleontologists can infer the lineages of those species.
The development of molecular genetics, and particularly of DNA sequencing, has allowed biologists to study the record of evolution left in organisms' genetic structures. The degrees of similarity and difference in the DNA sequences of modern species allows geneticists to reconstruct their lineages. It is from DNA sequence comparisons that figures such as the 96% genotypic similarity between humans and chimpanzees are obtained.[29][30]
Other evidence used to demonstrate evolutionary lineages includes the geographical distribution of species. For instance, monotremes and most marsupials are found only in Australia, showing that their common ancestor with placental mammals lived before the submerging of the ancient land bridge between Australia and Asia.
Scientists correlate all of the above evidence, drawn from paleontology, anatomy, genetics, and geography, with other information about the history of Earth. For instance, paleoclimatology attests to periodic ice ages during which the world's climate was much cooler, and these are often found to match up with the spread of species which are better-equipped to deal with the cold, such as the woolly mammoth.
Morphological evidence
Letter c in the picture indicates the undeveloped hind legs of a baleen whale, vestigial remnants of its terrestrial ancestors.Fossils are critical evidence for estimating when various lineages originated. Since fossilization of an organism is an uncommon occurrence, usually requiring hard parts (like teeth, bone, or pollen), the fossil record provides only sparse and intermittent information about ancestral lineages.[31]
The fossil record provides several types of data important to the study of evolution. First, the fossil record contains the earliest known examples of life itself, as well as the earliest occurrences of individual lineages. For example, the first complex animals date from the early Cambrian period, approximately 520 million years ago. Second, the records of individual species yield information regarding the patterns and rates of evolution, showing whether, for example, speciation occurs gradually and incrementally, or in relatively brief intervals of geologic time. Thirdly, the fossil record is a document of large-scale patterns and events in the history of life. For example, mass extinctions frequently resulted in the loss of entire groups of species, while leaving others relatively unscathed. Recently, molecular biologists have used the time since divergence of related lineages to calibrate the rate at which mutations accumulate, and at which the genomes of different lineages evolve.
Phylogenetics, the study of the ancestry of species, has revealed that structures with similar internal organization may perform divergent functions. Vertebrate limbs are a common example of such homologous structures. The appendages on bat wings, for example, are very structurally similar to human hands, and may constitute a vestigial structure. Vestigial structures are idiosyncratic anatomical features such as the panda's "thumb", which indicate how an organism's evolutionary lineage constrains its adaptive development. Other examples of vestigial structures include the degenerate eyes of blind cave-dwelling fish, and the presence of hip bones in whales and snakes. Such structures may exist with little or no function in a more current organism, yet have a clear function in an ancestral species. Examples of vestigial structures in humans include wisdom teeth, the coccyx and the vermiform appendix.
These anatomical similarities in extant and fossil organisms can give evidence of the relationships between different groups of organisms. Important fossil evidence includes the connection of distinct classes of organisms by so-called "transitional" species, such as the Archaeopteryx, which provided early evidence for intermediate species between dinosaurs and birds,[32] and the recently-discovered Tiktaalik, which clarifies the development from fish to animals with four limbs.[33]
Molecular evidence
By comparing the genetic and/or protein sequences of species, we can discern their evolutionary relationships. The resultant phylogenetic trees are typically congruent with traditional taxonomy, and are often used to either strengthen or correct taxonomic classifications. Sequence comparison is considered a measure robust enough to be used to correct erroneous assumptions in the phylogenetic tree in instances where other evidence is scarce. For example, neutral human DNA sequences are approximately 1.2% divergent (based on substitutions) from those of their nearest genetic relative, the chimpanzee, 1.6% from gorillas, and 6.6% from baboons.[34] Genetic sequence evidence thus allows inference and quantification of genetic relatedness between humans and other apes.[35][36] The sequence of the 16S rRNA gene, a vital gene encoding a part of the ribosome, was used to find the broad phylogenetic relationships between all extant life. This analysis, originally done by Carl Woese, resulted in the three-domain system, arguing for two major splits in the early evolution of life. The first split led to modern bacteria, and the subsequent split led to modern archaea and eukaryotes.
Since metabolic processes do not leave fossils, research into the evolution of the basic cellular processes is done largely by comparison of existing organisms. Many lineages diverged when new metabolic processes appeared, and it is theoretically possible to determine when certain metabolic processes appeared by comparing the traits of the descendants of a common ancestor or by detecting their physical manifestations. For example, the appearance of oxygen in the earth's atmosphere is linked to the evolution of photosynthesis.
The proteomic evidence also supports the universal ancestry of life. Vital proteins, such as the ribosome, DNA polymerase, and RNA polymerase, are found in everything from the most primitive bacteria to the most complex mammals. The core part of the protein is conserved across all lineages of life, serving similar functions. Higher organisms have evolved additional protein subunits, largely affecting the regulation and protein-protein interaction of the core. Other overarching similarities between all lineages of extant organisms, such as DNA, RNA, amino acids, and the lipid bilayer, give support to the theory of common descent. The chirality of DNA, RNA, and amino acids is conserved across all known life. As there is no functional advantage to right- or left-handed molecular chirality, the simplest hypothesis is that the choice was made randomly by early organisms and passed on to all extant life through common descent. Further evidence for reconstructing ancestral lineages comes from junk DNA such as pseudogenes, "dead" genes which steadily accumulate mutations.[37]
There is also a large body of molecular evidence for a number of different mechanisms for large evolutionary changes, among them: genome and gene duplication, which facilitates rapid evolution by providing substantial quantities of genetic material under weak or no selective constraints; horizontal gene transfer, the process of transferring genetic material to another cell that is not an organism's offspring, allowing for species to acquire beneficial genes from each other; recombination, capable of reassorting large numbers of different alleles and of establishing reproductive isolation; and endosymbiosis, the incorporation of genetic material and biochemical composition of a separate species, a process observed in organisms such as the protist hatena and used to explain the origin of organelles such as mitochondria and plastids as the absorption of ancient prokaryotic cells into ancient eukaryotic ones.[38][39]
History of life
Main article: Timeline of evolution
Fossil evidence indicates that the diversity and complexity of modern life has developed over much of the 4.57 billion year history of Earth. Oxygenic photosynthesis emerged around 3 billion years ago, and the subsequent emergence of an oxygen-rich atmosphere made the development of aerobic cellular respiration possible around 2 billion years ago. In the last billion years, simple multicellular plants and animals began to appear in the oceans. Soon after the emergence of the first animals, the Cambrian explosion, a geologically brief period of remarkable biological diversity, originated all the major body plans, or phyla, of modern animals.
About 500 million years ago (mya), plants and fungi colonized the land, and were soon followed by arthropods and other animals. Amphibians first appeared around 300 mya, followed by reptiles, then mammals around 200 mya and birds around 100 mya. The human genus arose around 2 mya, while the earliest modern humans lived 200 thousand years ago.
Origin of Life
Main article: Origin of Life
Precambrian stromatolites in the Siyeh Formation, Glacier National Park. In 2002, William Schopf of UCLA published a controversial paper in the journal Nature arguing that formations such as this possess 3.5 billion year old fossilized algae microbes. If true, they would be the earliest known life on earth.The origin of life from self-catalytic chemical reactions is not a part of biological evolution, but rather of pre-evolutionary abiogenesis. However, disputes over what defines life make the point at which such increasingly complex sets of reactions became true organisms unclear. Not much is yet known about the earliest developments in life. There is no scientific consensus regarding the relationship of the three domains of organisms (Archaea, Bacteria, and Eukaryota) or regarding the precise reactions involved in abiogenesis. Attempts to shed light on the origin of life generally focus on the behavior of macromolecules—particularly RNA—and the behavior of complex systems.
Common descent
Main article: Common descent
Morphologic similarities in the Hominidae family are evidence of common descent.The theory of universal common descent proposes that all organisms on Earth are descended from a common ancestor or ancestral gene pool. Evidence for common descent is inferred from traits shared between all living organisms. In Darwin's day, the evidence of shared traits was based solely on visible observation of morphologic similarities, such as the fact that all birds, even those which do not fly, have wings. Today, there is strong evidence from genetics that all organisms have a common ancestor. For example, every living cell makes use of nucleic acids as its genetic material, and uses the same 20 amino acids as the building blocks for proteins. The universality of these traits strongly suggests common ancestry, because the selection of many of these traits seems arbitrary.[40]
Study of evolution
Main article: Evolutionary biology
History of modern evolutionary thought
Main article: History of evolutionary thought
Gregor Mendel's work on the inheritance of traits in pea plants (pisum sativum) laid the foundation for genetics, a field greatly associated with evolution.
Charles Darwin at age 51, just after publishing The Origin of Species.Although the idea of evolution has existed since classical antiquity, being first discussed by Greek philosophers such as Anaximander, the first convincing exposition of a mechanism by which evolutionary change could occur was not proposed until Charles Darwin and Alfred Russel Wallace jointly presented the theory of evolution by natural selection to the Linnean Society of London in separate papers in 1858. Shortly after, the publication of Darwin's On the Origin of Species popularized and provided detailed support for the theory.
However, Darwin had no working mechanism for inheritance. This was provided in 1865 by Gregor Mendel, whose research revealed that distinct traits were inherited in a well-defined and predictable manner.[41]
In the 1930s, Darwinian natural selection and Mendelian inheritance were combined to form the modern evolutionary synthesis. In the 1940s, the identification of DNA as the genetic material by Oswald Avery and colleagues, and the articulation of the double-helical structure of DNA by James Watson and Francis Crick, provided a physical basis for the notion that genes were encoded in DNA. Since then, the role of genetics in evolutionary biology has become increasingly central.[42]
Academic disciplines
Main article: Current research in evolutionary biology
Scholars in a number of academic disciplines continue to document examples of evolution, contributing to a deeper understanding of its underlying mechanisms. Every subdiscipline within biology both informs and is informed by knowledge of the details of evolution, such as in ecological genetics, human evolution, molecular evolution, and phylogenetics. Areas of mathematics (such as bioinformatics), physics, chemistry, and other fields all make important contributions to current understanding of evolutionary mechanisms. Even disciplines as far removed as geology and sociology play a part, since the process of biological evolution has coincided in time and space with the development of both the Earth and human civilization.
Evolutionary biology is a subdiscipline of biology concerned with the origin and descent of species, as well as their changes over time. It was originally an interdisciplinary field including scientists from many traditional taxonomically-oriented disciplines. For example, it generally includes scientists who may have a specialist training in particular organisms, such as mammalogy, ornithology, or herpetology, but who use those organisms to answer general questions in evolution. Evolutionary biology as an academic discipline in its own right emerged as a result of the modern evolutionary synthesis in the 1930s and 1940s. It was not until the 1970s and 1980s, however, that a significant number of universities had departments that specifically included the term evolutionary biology in their titles.
Evolutionary developmental biology (informally, evo-devo) is a field of biology that compares the developmental processes of different animals in an attempt to determine the ancestral relationship between organisms and how developmental processes evolved. The discovery of genes regulating development in model organisms allowed for comparisons to be made with genes and genetic networks of related organisms.
Physical anthropology emerged in the late 19th century as the study of human osteology, and the fossilized skeletal remains of other hominids. At that time, anthropologists debated whether their evidence supported Darwin's claims, because skeletal remains revealed temporal and spatial variation among hominids, but Darwin had not offered an explanation of the specific mechanisms that produce variation. With the recognition of Mendelian genetics and the rise of the modern synthesis, however, evolution became both the fundamental conceptual framework for, and the object of study of, physical anthropologists. In addition to studying skeletal remains, they began to study genetic variation among human populations (population genetics); thus, some physical anthropologists began calling themselves biological anthropologists.
The capability of evolution through selection to produce designs optimized for a particular environment has greatly interested mathematicians, scientists and engineers. There has been some recent success in implementing these ideas for artificial uses, including genetic algorithms, which can find the solution to a multi-dimensional problem more quickly than standard software produced by human intelligent designers, and the use of evolutionary fitness landscapes to optimize the design of a system[43] Evolutionary optimization techniques are particularly useful in situations in which it is easy to determine the quality of a single solution, but hard to go through all possible solutions one by one.
Social and religious controversies
Main articles: Social effect of evolutionary theory and Creation-evolution controversy
This caricature of Charles Darwin as an ape reflects the cultural backlash against evolution and common descent.Since publication of The Origin of Species in 1859, evolution has been a source of nearly constant controversy due to its social, philosophical, and religious implications. Particularly in the United States, impassioned debate over the teaching of evolution in public schools has fueled the growth of the Creation Science and Intelligent Design movements, which seek to challenge the scientific basis of the theory of evolution. Nevertheless, the proposition that biological evolution occurs through the mechanism of natural selection is completely uncontested within the scientific community.[44]
As Darwin recognized early on, perhaps the most controversial aspect of evolutionary thought is its applicability to human beings. Specifically, many object to the idea that all diversity in life, including human beings, arose through natural processes without a need for supernatural intervention. Although many religions, such as Catholicism, have reconciled their beliefs with evolution through theistic evolution, creationists object to evolution on the basis that it contradicts their theistic origin beliefs.[45][verification needed][this source's reliability may need verification] In some countries—notably the United States—these tensions between scientific and religious teachings have fueled the ongoing creation-evolution controversy, with the politics of creationism especially centering on public education.[46][47][48][49]
While many other fields of science, such as cosmology[50] and earth science,[51] also conflict with a literal interpretation of many religious texts, evolutionary biology has borne the brunt of these debates. Some also argue that evolutionary common descent "degrades" human beings by placing them on the same level as other animals, in contrast with past views of a great chain of being in which humans are "above" animals.
Evolution has been used to support philosophical and ethical views which most contemporary scientists consider were neither mandated by evolution nor supported by science.[52] For example, the eugenic ideas of Francis Galton were developed into arguments that the human gene pool should be improved by selective breeding policies, including incentives for reproduction for those of "good stock" and disincentives, such as compulsory sterilization, "euthanasia", and later, prenatal testing, birth control, and genetic engineering, for those of "bad stock". Another example of an extension of evolutionary theory that is now widely regarded as unwarranted is "Social Darwinism", a term given to the 19th century Whig Malthusian theory developed by Herbert Spencer into ideas about "survival of the fittest" in commerce and human societies as a whole, and by others into claims that social inequality, racism, and imperialism were justified